For most farms there should be a preventative policy, based on herbicide rotation, to stop resistance occurring. The success of this strategy should be regularly monitored.

Resistance occurs in both common and winter wild-oats. Changes in cultivation or drilling date do little to reduce emergence of common wild-oats. However, many instances of resistance are in winter wild-oat populations, which spring cropping will reduce.

Enhanced metabolism results in partial resistance to the ‘fops’ and also cross-resistance to the ‘dims’ and to other herbicides, e.g. imazamethabenz-methyl and flamprop-M-isopropyl.

Some wild-oat populations have target site resistance. However, these are only resistant to ‘fops’, not ‘dims’ or any other herbicides.

To date, no resistance has been found to tri-allate isoproturon (IPU), difenzoquat, teprafoxydim or cycloxydim in the UK.

- Rotate herbicide modes of action.
- Rotate crops to:
 - allow a greater range of herbicide modes of action to be used,
 - reduce populations of winter wild-oats.
- Map wild-oat patches and do not assume they are spray ‘misses’. Act early to prevent patches spreading across fields.
- Hand rogue intensively or spray patches with non-selective weedkillers to prevent spread.
- Reduce reliance on ‘fops’ and ‘dims’ by using herbicides with alternative modes of action.
- Delay cultivation for as long as possible after harvest, ideally over winter, to allow birds and mammals time to eat seeds shed from the previous crop.
- Minimise weed seed movement in combines, straw, cultivation equipment and by other means.
- Monitor herbicide performance and identify causes of poor activity.
- Test seed if resistance is suspected.
- Apply post-emergence herbicides when weeds are small (1-3 leaves) to maximise control of partially resistant wild-oats. Plants with target site resistance are unlikely to be controlled by the ‘fops’ at any timing.